If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+7x-15=00
a = 2; b = 7; c = -15;
Δ = b2-4ac
Δ = 72-4·2·(-15)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-13}{2*2}=\frac{-20}{4} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+13}{2*2}=\frac{6}{4} =1+1/2 $
| 100*n=0.25 | | -7x-15=2 | | x/5+18=20 | | 3x+7=-13 | | x+x+x/2+x/4+3=300 | | -(13/14)x=7 | | 0=437x^2+103x+11 | | 0.67*(6x+3)=4x+2 | | -7(-7+4)+4(3+2x)=-73 | | 1/5x=+7 | | 14=y+48/y | | 0.2x=+7 | | -3y=-2(-3)-6 | | -6x-12+16x=8 | | -3y=-2(-2)-6 | | 48+(2x+4)=112 | | 5(−2x−3)+3x+3=2 | | -3y=-2(-1)-6 | | -3y=-2(3)-6 | | –6x–32=2x | | -2h=-h-6 | | 5x-7+6=2(x-3) | | E^(5x-2)=14^(x) | | -4+5x-22x=-55 | | -10+x+4-5=7x- | | -3y=-2(2)-6 | | -15+5v=3v+1 | | 2y-6=7y+2 | | (3x+1)x(x)=24 | | 7x-161=4x-32 | | n(2n-3)=44 | | -3y=-2(1)-6 |